Mechanical Properties of 3D Printed Orthodontic Retainers
cris.lastimport.scopus | 2024-11-09T02:30:25Z | |
dc.abstract.en | Orthodontic retention is the final important stage of orthodontic treatment, the aim of which is to consolidate the functional and aesthetic position of teeth. Among adults, fixed retainers made of different types of wires are the most common. The aim of this study was to analyse the mechanical properties of a new generation of fixed orthodontic retainers—printed by 3D printers. Materials and Methods: The study was conducted using samples made of Nextdent MFH C&B N1 resin in the form of cuboid bars with nominal dimensions of width b = 3 mm, thickness d = 0.8 mm; 1 mm; 1.2 mm, length l = 30 mm for each type. The influence of the thickness of the retainers on their strength under loaded conditions was evaluated. Flexural strength, elastic properties, deflection, and creep were compared. The samples were aged in an artificial saliva bath at 37 ± 1 ◦C during the strength tests. Results: It was shown that differences in the thickness of the samples affected their elastic and strength properties. The highest average flexural modulus, the highest deflection, creep, and strength was characteristic of the samples with the highest thickness (1.2 mm). Samples with an average thickness of 1 mm had the lowest modulus of elasticity. Conclusions: The mechanical properties of 3D printed retainers show that they can be an alternative to metal retainers and the procedure of making new retainers, especially when patients have aesthetic requirements or allergies to metals. | |
dc.affiliation | Administracji i Nauk Społecznych | |
dc.contributor.author | Marcel Firlej | |
dc.contributor.author | Katarzyna Zaborowicz | |
dc.contributor.author | Maciej Zaborowicz | |
dc.contributor.author | Ewa Firlej | |
dc.contributor.author | Ivo Domagała | |
dc.contributor.author | Daniel Pieniak | |
dc.contributor.author | Joanna Igielska-Kalwat | |
dc.contributor.author | Artur Dmowski | |
dc.contributor.author | Barbara Biedziak | |
dc.date.accessioned | 2024-03-22T11:55:31Z | |
dc.date.available | 2024-03-22T11:55:31Z | |
dc.date.issued | 2022 | |
dc.description.abstract | <jats:p>Orthodontic retention is the final important stage of orthodontic treatment, the aim of which is to consolidate the functional and aesthetic position of teeth. Among adults, fixed retainers made of different types of wires are the most common. The aim of this study was to analyse the mechanical properties of a new generation of fixed orthodontic retainers—printed by 3D printers. Materials and Methods: The study was conducted using samples made of Nextdent MFH C&B N1 resin in the form of cuboid bars with nominal dimensions of width b = 3 mm, thickness d = 0.8 mm; 1 mm; 1.2 mm, length l = 30 mm for each type. The influence of the thickness of the retainers on their strength under loaded conditions was evaluated. Flexural strength, elastic properties, deflection, and creep were compared. The samples were aged in an artificial saliva bath at 37 ± 1 °C during the strength tests. Results: It was shown that differences in the thickness of the samples affected their elastic and strength properties. The highest average flexural modulus, the highest deflection, creep, and strength was characteristic of the samples with the highest thickness (1.2 mm). Samples with an average thickness of 1 mm had the lowest modulus of elasticity. Conclusions: The mechanical properties of 3D printed retainers show that they can be an alternative to metal retainers and the procedure of making new retainers, especially when patients have aesthetic requirements or allergies to metals.</jats:p> | |
dc.identifier.doi | 10.3390/ijerph19095775 | |
dc.identifier.issn | 1660-4601 | |
dc.identifier.uri | https://repo.akademiawsei.eu/handle/item/132 | |
dc.language | en | |
dc.pbn.affiliation | economics and finance | |
dc.relation.ispartof | International Journal of Environmental Research and Public Health | |
dc.rights | CC-BY | |
dc.subject.en | digital orthodontics | |
dc.subject.en | lingual retainer | |
dc.subject.en | 3D printing in orthodontics | |
dc.subject.en | CAD/CAM in orthodontics | |
dc.subject.en | aligner | |
dc.title | Mechanical Properties of 3D Printed Orthodontic Retainers | |
dc.type | ReviewArticle | |
dspace.entity.type | Publication | |
oaire.citation.issue | 9 | |
oaire.citation.volume | 19 |
Pliki
Oryginalne pliki
1 - 1 z 1
Ładowanie...
- Nazwa:
- Mechanical Properties of 3D Printed Orthodontic Retainers.pdf
- Rozmiar:
- 1.85 MB
- Format:
- Adobe Portable Document Format
- Opis:
Licencja
1 - 1 z 1
Ładowanie...
- Nazwa:
- license.txt
- Rozmiar:
- 1.71 KB
- Format:
- Item-specific license agreed to upon submission
- Opis: